

 1 of 3 REV: 030804

INTRODUCTION
A major concern of many embedded device programmers is the robustness of their application. Will the device
always be able to start and perform its intended function? One of the easiest ways to gain this reliability on the
TINI® microcontroller is to place the main application in flash memory. However, by placing code here, the default
application, slush, gets overwritten. Most developers would like to keep the functionality of slush and gain
robustness for their application too. This can be accomplished by making modifications to slush, adding the
desired functionality. This application note describes the steps required to modify slush, including where to change
the code. It also discusses how to rebuild the application and ways to reduce slush�s size.

CHANGING THE SOURCE CODE
Before you can change the slush source code, you must extract it from the distribution package. All the source
code for slush can be found in the SlushSrc.jar file located in the src directory of each TINI release. Once you
have done this, you can begin making your changes. Two of the most common modifications are adding custom
commands to the shell and combining the functionality of another program with the features of slush. The steps
required for each task are outlined below.

ADDING A CUSTOM COMMAND
The first step is writing the code for the command. Every command in slush must implement the
com.dalsemi.slush.command.SlushCommand interface. This interface has two methods:

String getUsageString();

void execute(SystemInputStream in, SystemPrintStream out, SystemPrintStream
err, String[] args, Hashtable env) throws Exception;

The getUsageString method should return the message you want users to see when using slush�s help
command. The real work is done in the execute method. This is where you will add the code to be executed
when the command is run. The in, out, and err parameters are the console�s standard input stream, output
stream, and error stream, respectively. The args array will contain all the arguments the user entered when they
executed the command. The env parameter will contain various system properties and environmental variables.

Once you have finished coding the command, you need to add it to slush�s list of known commands. Find the
initializeShellCommands method in the Slush.java file located in the com.dalsemi.slush package.
Inside this method, create an instance of your command and pass it to the addCommand method of the
com.dalsemi.slush.CommandInterpreter class. This method has the following prototype:

public static final boolean addCommand(String name, SlushCommand executer)

The first parameter is the string you want the user to type at the slush command line to run the command. The
second parameter is the instance of the command itself.

TINI is a registered trademark of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.

Application Note 3108
Modifying and Rebuilding Slush

www.maxim-ic.com

App Note 3108: Modifying and Rebuilding Slush

 2 of 3

ADDING NEW FUNCTIONALITY
If you want your code to run every time slush runs, and not just when a certain command is entered, you need to
make changes to the com.dalsemi.slush.Slush class. The best place to make these changes is in the main
method. In the default implementation of slush, there is only one line of source code, a call to the Slush
constructor. In the constructor, the network servers are initialized, all the commands are added, and the startup file
is executed. Add your code before or after the call to the Slush constructor, based on your program�s needs.

BUILDING THE BINARY
Now that you have made your changes, you need to compile the new source into a file that can be loaded into
TINI�s flash memory. The first step is to compile your source into class files. Use whatever tool you prefer for this
step. If you use javac on a windows system, the following two command lines may be used:

dir %SlushSource%*.java /B /S /ON > files

javac -bootclasspath %TINIBin%\tiniclasses.jar;%TINIBin%\modules.jar �d
%SlushBin% @files

where %SlushSource% is the directory holding all the slush source code and your modifications, %TINIBin% is
the bin directory of the TINI SDK, and %SlushBin% is the directory where you want the resulting class files stored.
Once you resolve any compiling errors, use the BuildDependency tool to convert the class files into TINI�s flash file
format. The following command is used to build slush for TINI releases (Note: this command should be entered on
a single line):

java -classpath %TINIBin%\tini.jar BuildDependency -f %SlushBin% -d %TINIBin%\tini.db
-o slush.tbin -l -p %TINIBin%\modules.jar -add FTPCLIENT;MAILTO -fake �noreflect-
ref com.dalsemi.slush.util.FakeMainMaker -ref
com.dalsemi.slush.command.SlushCommand -ref com.dalsemi.protocol.mailto.Handler

where %TINIBin% and %SlushBin% are the same as in the previous step. This command should be used when
building slush for the TINIm390 module. If you need to build slush for the TINIm400, add a �-t 470100� switch to
the command line above. Executing this command will result in a slush.tbin file that can be loaded into TINI�s
flash.

REDUCING THE SIZE
Many times after making changes to slush, you will discover the resulting slush.tbin file is too large to fit into
one bank of the flash on the TINIm390. Unless you�ve added extra flash to your TINI board, you only have 65,280
bytes available, and you must reduce the size of your application. The easiest solution is to remove some of the
slush commands you do not need. First, look through the list of commands in the
com.dalsemi.slush.command package and decide which ones you would like to remove. Second, edit the
initializeShellCommands method in the Slush.java file and remove the calls to
CommandInterpreter.addCommand where the commands you selected are configured. Next, follow the steps
in the previous section to rebuild slush, making sure to remove the class files of the commands you removed
before running the last step. Continue removing commands until slush reaches the appropriate size.

CONCLUSION
By making additions and modifications to slush, you can merge the functionality of your project with the many
features already available in slush. Since your application will now be loaded into TINI�s flash memory instead of
residing in RAM, you will also gain robustness for your application.

App Note 3108: Modifying and Rebuilding Slush

 3 of 3

MAXIM INTEGRATED PRODUCTS/DALLAS SEMICONDUCTOR CONTACT
INFORMATION

Company Addresses:

Maxim Integrated Products, Inc.
120 San Gabriel Drive
Sunnyvale, CA 94086
Tel: 408-737-7600
Fax: 408-737-7194

Dallas Semiconductor
4401 S. Beltwood Parkway
Dallas, TX 75244
Tel: 972-371-4448
Fax: 972-371-4799

Product Literature/Samples Requests:
800-998-8800
408-737-7600

Sales and Customer Service:

World Wide Website:
www.maxim-ic.com

Product Information:
www.maxim-ic.com/MaximProducts/products.htm

Ordering Information:
www.maxim-ic.com/BuyMaxim/Sales.htm

FTP Site:
ftp://ftp.dalsemi.com

http://www.maxim-ic.com
http://www.maxim-ic.com/MaximProducts/products.htm
http://www.maxim-ic.com/BuyMaxim/Sales.htm
ftp://ftp.dalsemi.com/

	INTRODUCTION
	CHANGING THE SOURCE CODE
	ADDING A CUSTOM COMMAND
	ADDING NEW FUNCTIONALITY
	BUILDING THE BINARY
	REDUCING THE SIZE
	CONCLUSION
	MAXIM INTEGRATED PRODUCTS/DALLAS SEMICONDUCTOR CONTACT INFORMATION

